

DE LA RECHERCHE À L'INDUSTRIE

Presenting Categories Modulo a Rewriting System

Florence Clerc, Samuel Mimram

www.cea.fr

May 5, 2015 digiteo

Rewriting systems and monoids

Let us consider a rewriting system (P_1, P_2) :

- \blacksquare P_1 the alphabet $x, y \dots$,
- $\blacksquare P_2 \subset P_1^* \times P_1^*$ a set of rules $w_1 \to w_2$.

This rewriting system $P = (P_1, P_2)$ presents a monoid :

- \blacksquare P_1^* is the free monoid generated by P_1 ,
- call $\stackrel{*}{\leftrightarrow}$ the congruence generated by the rules in P_2 (symmetric, reflexive, transitive and context closure of \rightarrow),
- lacktriangle the rewriting system P presents the monoid $\|P\|=P_1^*/\stackrel{*}{\leftrightarrow}$
- \blacksquare when the rewriting system is convergent, the elements of $\|P\|$ are isomorphic to normal forms wrt P

Example : Presentation of $\mathbb N$

Let's try to present the monoid $\mathbb N$:

- We need a generator a
- The elements of the free monoids are $a^0, a^1, a^2, a^3, ...$
- \blacksquare There is an isomorphism of monoids between the generated monoid and $\mathbb N$

We get the presentation (P_1, P_2) with :

$$P_1 = \{a\}$$
$$P_2 = \emptyset$$

Example : Presentation of $\mathbb{N} \times \mathbb{N}$

- It's two copies of \mathbb{N} , so let's take one generator for each copy : a=(1,0) b=(0,1)
- The operation is given by the sum componentwise : $(i,j) \otimes (k,l) = (i+k,j+l)$
- The elements of the free monoids are words with a and b

We get the presentation (P_1, P_2) with

$$P_1 = \{a, b\}$$
$$P_2 = \emptyset$$

Example : Presentation of $\mathbb{N} \times \mathbb{N}$

- It's two copies of \mathbb{N} , so let's take one generator for each copy : a = (1,0) b = (0,1)
- The operation is given by the sum componentwise : $(i,j) \otimes (k,l) = (i+k,j+l)$
- The elements of the free monoids are words with a and b
- There are two many of them
- We need the rule $ba \rightarrow ab$
- The normal forms are $a^m b^n$ with (m, n) in $\mathbb{N} \times \mathbb{N}$
- lacksquare The presented monoid is isomorphic to $\mathbb{N} \times \mathbb{N}$

We get the presentation (P_1, P_2) with

$$P_1 = \{a, b\}$$

$$P_2 = \{ba \to ab\}$$

Presentation of category

This is a generalization of the presentation of monoids (a monoid is a category with one object)

- Consider a graph (P_0, P_1) (source and target functions s_0, t_0),
- It generates a free category with objects P_0 and morphisms P_1^*

Presentation of category

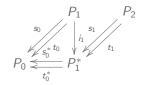
This is a generalization of the presentation of monoids (a monoid is a category with one object)

- Consider a graph (P_0, P_1) (source and target functions s_0, t_0),
- It generates a free category with objects P_0 and morphisms P_1^*
- Consider a set $P_2 \subset P_1^* \times P_1^*$ of relations $\alpha : f \Rightarrow g$ such that

$$s_0^* \circ s_1 = s_0^* \circ t_1 \qquad t_0^* \circ s_1 = t_0^* \circ t_1$$

with
$$s_1(\alpha) = f$$
 and $t_1(\alpha) = g$

■ A relation α is a rewriting rule $f \rightarrow g$ (with f and g parallel)



Presentation of category

This is a generalization of the presentation of monoids (a monoid is a category with one object)

- Consider a graph (P_0, P_1) (source and target functions s_0, t_0),
- \blacksquare It generates a free category with objects P_0 and morphisms P_1^*
- lacksquare Consider a set of relations $P_2 \subset P_1^* \times P_1^*$
- Similarly to the case of monoids, we consider the normal forms of P_1^* wrt this rewriting system. If the rewriting system is convergent, they are equivalent to the equivalence classes wrt $\stackrel{*}{\leftrightarrow}$
- The category presented is the category ||P|| with objects P_0 and morphisms $P_1^*/\stackrel{*}{\leftrightarrow}$

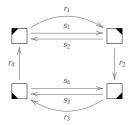
Example : the dihedral category (1/2)

Definition

The dihedral group D_n is the group of isometries of the plane preserving a regular polygon with n faces. This group is generated by a rotation r of angle $2\pi/n$ and a reflection s, and can be described as the free group over the two generators r and s quotiented by the congruence generated by the three relations $s^2 = \operatorname{id}_r r^n = \operatorname{i$

Example: the dihedral category $D_4^{\bullet}(2/2)$

We consider a variant where a vertex of the square is distinguished :

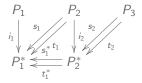


$$r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_i = \operatorname{id}$$
 $s_{j+1} \circ s_j = \operatorname{id}$ $r_j \circ s_{j+1} \circ r_j = s_j$
 $s_j \circ s_{j+1} = \operatorname{id}$ $r_{j+3} \circ s_{j+2} \circ r_{j+1} = s_{j+1}$

for $i \in \{1, ..., 4\}$ and $j \in \{1, 3\}$, where the indices are to be taken modulo 4 so that they lie in $\{1, ..., 4\}$.

Presentation of a monoidal category

- \blacksquare Consider a set of generators for objects P_1
- \blacksquare Generate the free monoid P_1^*
- \blacksquare Consider a set of generators for morphisms P_2 between objects in P_1^*
- Consider the free monoidal category with objects P_1^* and morphisms P_2^*
- Consider a set of relations $P_3 \subset P_2^* \times P_2^*$. Its elements are rewriting rules $f \Rightarrow g$.
- If the rewriting system is convergent, the equivalence classes of P_2^* modulo $\stackrel{*}{\Leftrightarrow}$ are isomorphic to normal forms of elements of P_2^* wrt P_3
- The monoidal category presented by $P = (P_1, P_2, P_3)$ is the category with objects P_1^* and with morphisms $P_2^* / \stackrel{*}{\Leftrightarrow}$



An example : Δ

Δ is the monoidal category

- lacksquare with objects : $\mathbb N$
- morphisms $m \to n$: increasing functions $[m] \to [n]$ with $[m] = \{0, \dots, m-1\}$
- tensor product : $m \otimes n = m + n$

An example : Δ

Δ is the monoidal category

- \blacksquare with objects : $\mathbb N$
- morphisms $m \to n$: increasing functions $[m] \to [n]$ with $[m] = \{0, \dots, m-1\}$
- tensor product : $m \otimes n = m + n$

What is a presentation (P_1, P_2, P_3) of Δ ?

$$\begin{split} P_1 &= \{a\} \\ P_2 &= \left\{\mu : a^2 \to a, \eta : 1 \to a\right\} \\ P_3 &= \{A : \mu \circ (\mathsf{id} \otimes \mu) \Rightarrow \mu \circ (\mu \otimes \mathsf{id}), \\ R : \mu \circ (\mathsf{id} \otimes \eta) \Rightarrow \mathsf{id}, \\ L : \mu \circ (\eta \otimes \mathsf{id}) \Rightarrow \mathsf{id} \} \end{split}$$

Normal forms

$$\begin{split} P_1 &= \{a\} \\ P_2 &= \left\{ \mu : a^2 \to a, \eta : 1 \to a \right\} \\ P_3 &= \{A : \mu \circ (\mathsf{id} \otimes \mu) \Rightarrow \mu \circ (\mu \otimes \mathsf{id}), \\ R : \mu \circ (\mathsf{id} \otimes \eta) \Rightarrow \mathsf{id}, \\ L : \mu \circ (\eta \otimes \mathsf{id}) \Rightarrow \mathsf{id} \} \end{split}$$

The normal forms in P_2^* are tensor products of :

$$\eta \qquad \mu \circ (\mathsf{id} \otimes (\mu \circ (\mathsf{id} \otimes (\ldots))))$$

Beware

The problem with presentations of monoidal category

It is required that the underlying monoid is free!

Intuition of the problem : $\Delta \times \Delta$

What is a presentation of $\Delta \times \Delta$? The underlying monoid $\mathbb{N} \times \mathbb{N}$ is not free but let's try :

$$\begin{split} P_1 &= \{a, b\} \\ P_2 &= \{\mu_a : a^2 \to a, \eta_a : 1 \to a, \mu_b : b^2 \to b, \eta_b : 1 \to b\} \\ P_3 &= \{A_a, R_a, L_a, A_b, R_b, L_b\} \end{split}$$

Intuition of the problem : $\Delta \times \Delta$

What is a presentation of $\Delta \times \Delta$? The underlying monoid $\mathbb{N} \times \mathbb{N}$ is not free but let's try :

$$P_{1} = \{a, b\}$$

$$P_{2} = \{\mu_{a} : a^{2} \to a, \eta_{a} : 1 \to a, \mu_{b} : a^{2} \to a, \eta_{b} : 1 \to a, \gamma : ba \to ab\}$$

$$P_{3} = \{A_{a}, R_{a}, L_{a}, A_{b}, R_{b}, L_{b}, ...?\}$$

The set of objects is too big : we would need to still have the rewriting rule $ba \rightarrow ab$.

This morphism γ is what we call an equational morphism : we would like to be able to consider the objects modulo this relation between objects

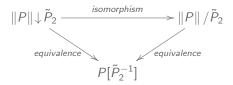
Set of equational morphisms \tilde{P}_2

Three constructions:

- $\blacksquare \|P\| \downarrow \tilde{P}_2$ Consider normal forms wrt to \tilde{P}_2 for objects
- $\blacksquare \|P\|/\tilde{P}_2$ Consider equational morphisms as identities: quotient
- lacksquare $P[\tilde{P}_2^{-1}]$ Consider equational morphisms as reversible: localization

Theorem

If the presentation (P, \tilde{P}_2) admits good properties, then



Presentation modulo

for simplicity, restrict to categories

Definition

A presentation modulo is (P, \tilde{P}_1) where

- \blacksquare *P* a presentation of category,
- \blacksquare \tilde{P}_1 a subset of P_1 (set of equational morphisms).

Quotient \mathcal{C}/Σ

intuition: we identify the equational morphisms with identities

Definition

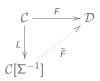
The *quotient* of a category $\mathcal C$ by a set Σ of morphisms of $\mathcal C$ is a category $\mathcal C/\Sigma$ together with a *quotient functor* $Q:\mathcal C\to\mathcal C/\Sigma$ sending the elements of Σ to identities, such that for every functor $F:\mathcal C\to\mathcal D$ sending the elements of Σ to identities, there exists a unique functor $\tilde F$ such that $\tilde F\circ Q=F$.

Localization $\mathcal{C}[\Sigma^{-1}]$

intuition: we identify the equational morphisms with isomorphisms

Definition

The localization of a category $\mathcal C$ by a set Σ of morphisms is the category $\mathcal C[\Sigma^{-1}]$ together with a localization functor $L:\mathcal C\to\mathcal C[\Sigma^{-1}]$ sending the elements of Σ to isomorphisms, such that for every functor $F:\mathcal C\to\mathcal D$ sending the elements of Σ to isomorphisms, there exists a unique functor $\tilde F$ such that $\tilde F\circ L=F$.



Explicit constructions

Lemma

The presentation (P_0, P_1', P_2') where $P_1' = P_1 \uplus \left\{ \overline{f} : y \to x \mid f : x \to y \in \tilde{P}_1 \right\}$ and where $P_2' = P_2 \uplus \left\{ \overline{f} \circ f \Rightarrow \operatorname{id}, f \circ \overline{f} \Rightarrow \operatorname{id} \mid f \in \tilde{P}_1 \right\}$ presents the localization of the category ||P|| by \tilde{P}_1 .

Lemma

The presentation (P'_0, P'_1, P'_2) where

- $P_0' = P_0/\cong_1$ where \cong_1 is the smallest equivalence such that $x \cong_1 y$ whenever there exists a generator $f: x \to y$ in \tilde{P}_1 , and we denote [x] the equivalence class of $x \in P_0$,
- the elements of P'_1 are $f:[x] \to [y]$ for $f:x \to y$ in P_1 ,
- the elements of P_2' are of the form $\alpha: f \to g$ for $\alpha: f \to g$ in P_2 , or $\alpha_f: f \to \operatorname{id}_{[x]}$ for $f: x \to y$ in \tilde{P}_1 ,

presents the quotient category $\|P\|/\tilde{P}_1$.

Category of normal forms $||P|| \downarrow \tilde{P}_1$

idea: chose a representative of the equivalence classes

Assumption

The rewriting system on P_0 with rules given by \tilde{P}_1 is convergent.

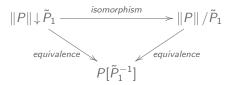
Definition

The category of normal forms is full subcategory of $\|P\|$ whose objects are the normal forms in P_0 wrt \tilde{P}_1

Main Result

Theorem

If the presentation (P, \tilde{P}_1) admits good properties, then



Why this question?

Consider the category

$$C = x \xrightarrow{f} y$$

Let's consider $\tilde{P}_1 = \{f, g\}$.

The quotient is

$$\overline{X}$$
 \bigcirc id

The localization is equivalent to

$$\star \bigcirc m{\in}\mathbb{Z}$$

Quotient and localization are not equivalent!

Why this question?

Consider the category

$$C = x \xrightarrow{f} y$$

Let's consider $\tilde{P}_1 = \{f\}$. The category of normal forms is

$$y \bigcirc id$$

The localization is generated by

$$x \xrightarrow{f^{-1}} y$$

with f and f^{-1} inverses Normal forms and localization are not equivalent!

Why this question?

Consider the category

$$C = x \xrightarrow{f} y$$

Let's consider $\tilde{P}_1 = \{f\}$. The category of normal forms is

$$y \bigcirc ic$$

The quotient is

$$\overline{y}$$
 \bigcirc g

Normal forms and quotient are not isomorphic!

Assumption 1 : convergence

Assumption

The rewriting system on P_0 with rules \tilde{P}_1 is convergent (terminating and confluent).

Assumption 2: residuation

Intuition: an equational should not change anything.

Assumption

for every pair of distinct coinitial generators $f: x \to y_1$ in \tilde{P}_1 and $g: x \to y_2$ in P_1 , there exist a pair of cofinal morphisms $g': y_1 \to z$ in P_1^* and $f': y_2 \to z$ in \tilde{P}_1^* and relation $\alpha: g' \circ f \Leftrightarrow f' \circ g$ in P_2 ,

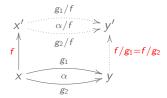
We suppose fixed an arbitrary choice of a particular triple (g', f', α) associated to it, and write g/f for g' residual of g after f, f/g for f' residual of f after g.

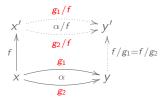
Assumption 3: Cylinder property

Intuition: an equational should not change anything.

Assumption

for every triple of coinitial morphisms $f: x \to x'$ in \tilde{P}_1 (resp. in P_1) and $g_1, g_2: x \to y$ in P_1^* (resp. in \tilde{P}_1^*) such that there exists a relation $\alpha: g_1 \Leftrightarrow g_2$, we have $f/g_1 = f/g_2$ and there exists a 2-cell $g_1/f \stackrel{*}{\Leftrightarrow} g_2/f$. We write α/f for an arbitrary choice of such a 2-cell.

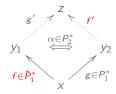


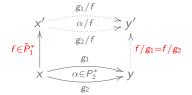


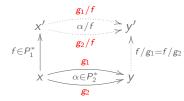
Assumption 4: termination properties

They ensure that we get global residuation (on morphisms) and global cylinder :

Theorem







Assumption 5: opposite

Assumption

The opposite presentation modulo $(P^{\mathrm{op}}, \tilde{P}_1^{\mathrm{op}})$ with

- $\blacksquare P^{\text{op}} = (P_0, P_1^{\text{op}}, P_2^{\text{op}})$
- $\blacksquare P_1^{\mathrm{op}} = \{ f^{\mathrm{op}} : y \to x \mid f : x \to y \in P_1 \}$
- $P_2^{\text{op}} = \{\alpha^{\text{op}} : f^{\text{op}} \Rightarrow g^{\text{op}} \mid \alpha : f \Rightarrow g\}$ with $f^{\text{op}} = f_1^{\text{op}} \circ ... \circ f_k^{\text{op}}$ for $f = f_k \circ ... \circ f_1$
- $lackbox{$\stackrel{\circ}{\mathbb{P}}$}$ $\tilde{P}_1^{\mathrm{op}}$ is the subset of P_1^{op} corresponding to \tilde{P}_1 .

also satisfies previous assumptions

Isomorphism between $\|P\|/ ilde{P}_1$ and $\|P\|\!\downarrow\! ilde{P}_1$

Theorem

The quotient of ||P|| by \tilde{P}_1 is isomorphic to the category of normal forms $||P|| \downarrow \tilde{P}_1$.

Sketch of proof (1/2)

lacksquare construct quotient functor $N: \|P\| \to \|P\| \downarrow \tilde{P}_1$ by

$$Nx = \hat{x}$$
 its normal form $Nf = \hat{f}$

$$\hat{f} \qquad \hat{y} = \hat{y}' \\
\stackrel{f}{=} \bigwedge u_{y'} \\
\hat{x} \xrightarrow{f/u_x} z \\
u_x \bigwedge \xrightarrow{\stackrel{*}{=}} \bigwedge u_x/f \\
x \xrightarrow{f} y$$

- the functor *N* is correctly defined thanks to the global properties on the residuals and of the cylinder
- \blacksquare $N\tilde{P}_1$ is a subset of the identities

Sketch of proof (2/2)

We define the inclusion functor $I: ||P|| \downarrow \tilde{P}_1 \rightarrow ||P||$

- \blacksquare F = GN checked on objects and morphisms
- lacksquare uniqueness of G comes from the fact that $NI=\operatorname{Id}_{\|P\| ilde{\mathcal{P}}_1}$

Faithfulness of L

Theorem

The localization functor $L: ||P|| \to ||P|| [\tilde{P}_1^{-1}]$ is faithful.

Remark

This is a generalization of a similar result of Dehornoy on embedding a presented monoid with good properties into its envelopping groupoid

Sketch of proof of the faithfulness of L

Relies on the following proposition:

Proposition

If the equational morphisms are epimorphisms and monomorphisms of $\|P\|$, then the localization functor L is faithful

■ From the global cylinder, we get that the equational morphisms are epi: consider residual after *f* equational morphism of

$$g_1 \circ f \stackrel{*}{\Leftrightarrow} g_2 \circ f$$

■ From the same assumptions on the opposite presentation, we get that the equational morphisms are mono

Equivalence between $\|P\|\,[ilde{P}_1^{-1}]$ and $\|P\|\downarrow ilde{P}_1^{-1}$

Theorem

The categories $\|P\|[\tilde{P}_1^{-1}]$ and $\|P\|\downarrow \tilde{P}_1$ are equivalent.

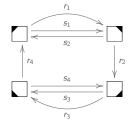
Sketch of proof of equivalence

■ Construction of the equivalence functor

$$S: \|P\| \downarrow \tilde{P}_1 \stackrel{I}{\rightarrow} \|P\| \stackrel{L}{\rightarrow} \|P\| [\tilde{P}_1^{-1}]$$

- S is full: using calculus of fractions, for (f, u) in $||P|| \downarrow \tilde{P}_1(\hat{x}, \hat{y})$, we get that $u = \operatorname{id}$ and Ff = (f, u)
- faithfulness : *I* is faithful, *L* is faithful

Our example : the dihedral category D_4^{\bullet}



■ This presentation does not satisfy the assumptions

Tietze-transformation

Definition

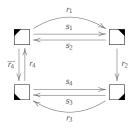
Given a presentation P, a Tietze transformation consists in

- adding (resp. removing) a generator $f \in P_1$ and a relation $\alpha: f \Rightarrow g \in P_2$ with $g \in (P_1 \setminus \{f\})^*$,
- adding (resp. removing) a relation $\alpha: f \Rightarrow g \in P_2$ such that f and g are equivalent wrt the congruence generated by the relations in $P_2 \setminus \{\alpha\}$.

Proposition

Two presentations P and P' are related by a finite sequence of Tietze transformations if and only if they present the same category, i.e. $\|P\| \cong \|P'\|$.

Tietze transformations on our example

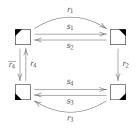


$$r_3 \circ r_2 \circ r_1 = \overline{r}_4 \quad s_{j+1} \circ s_j = \mathrm{id} \quad r_j \circ s_{j+1} \circ r_j = s_j$$

$$r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_i = \mathrm{id} \quad s_j \circ s_{j+1} = \mathrm{id} \quad r_{j+3} \circ s_{j+2} \circ r_{j+1} = s_{j+1}$$

for $i \in \{1, ..., 4\}$ and $j \in \{1, 3\}$, where the indices are to be taken modulo 4 so that they lie in $\{1, ..., 4\}$.

Tietze transformations on our example



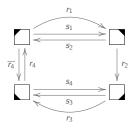
$$\overline{r}_4 \circ r_4 = \operatorname{id}$$
 $s_{j+1} \circ s_j = \operatorname{id}$ $r_j \circ s_{j+1} \circ r_j = s_j$

$$r_4 \circ \overline{r}_4 = \operatorname{id}$$
 $s_j \circ s_{j+1} = \operatorname{id}$ $r_{j+3} \circ s_{j+2} \circ r_{j+1} = s_{j+1}$

$$r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_i = \operatorname{id}$$
 $r_3 \circ r_2 \circ r_1 = \overline{r}_4$

for $i \in \{1, ..., 4\}$ and $j \in \{1, 3\}$, where the indices are to be taken modulo 4 so that they lie in $\{1, ..., 4\}$.

Tietze transformations on our example



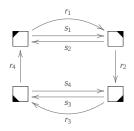
$$\overline{r}_4 \circ r_4 = \operatorname{id}$$
 $s_{j+1} \circ s_j = \operatorname{id}$ $r_j \circ s_{j+1} \circ r_j = s_j$
 $r_4 \circ \overline{r}_4 = \operatorname{id}$ $s_j \circ s_{j+1} = \operatorname{id}$ $r_{j+3} \circ s_{j+2} \circ r_{j+1} = s_{j+1}$

$$r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_i = id$$

for $i \in \{1, ..., 4\}$ and $j \in \{1, 3\}$, where the indices are to be taken modulo 4 so that they lie in $\{1, ..., 4\}$.

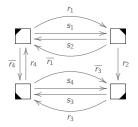
Our example : the dihedral category D_4^{ullet}

- We chose to add an inverse \overline{r}_4 for r_4 as the residual for r_2 after s_2
- lacksquare $ar{r}_4$ has to be an equational morphism
- The rewriting system with rules $\{r_2, r_4, \overline{r}_4\}$ is not terminating!
- However, it can be proven that the quotient (resp. localization) by $\{r_2, r_4\}$ and by $\{r_2, \overline{r}_4\}$ are isomorphic.



Our example : the dihedral category D_4^{\bullet}

We change the presentation via Tietze transformations and we get :



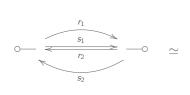
$$\begin{aligned} s_{j+1} \circ s_j &= \mathrm{id} \quad r_1 \circ s_2 \circ r_1 = s_1 \quad r_k \circ \overline{r}_k = \mathrm{id} \quad r_2 \circ r_1 = \overline{r}_3 \circ \overline{r}_4 \quad s_3 \circ r_2 = \overline{r}_4 \circ s_2 \\ s_j \circ s_{j+1} &= \mathrm{id} \quad \overline{r}_3 \circ s_3 \circ \overline{r}_3 = s_4 \quad \overline{r}_k \circ r_k = \mathrm{id} \quad r_3 \circ r_2 = \overline{r}_4 \circ \overline{r}_1 \quad r_2 \circ s_1 = s_4 \circ \overline{r}_4 \end{aligned}$$
 for $i \in \{1, \dots, 4\}, \ j \in \{1, 3\} \text{ and } k \in \{1, 3, 4\}$

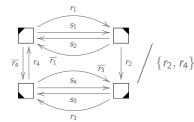
Our example : the dihedral category D_4^{\bullet}

All assumptions are true.

Theorem

The category D_2^{\bullet} is isomorphic to the quotient $D_4^{\bullet}/\{r_2, r_4\}$, embeds fully and faithfully into the category D_4^{\bullet} , and is equivalent to the localization $D_4^{\bullet}[\{r_2, r_4\}^{-1}]$.

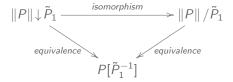




Conclusion

Theorem

If the presentation (P, \tilde{P}_1) satisfies our properties, then



- Florence Clerc, Samuel Mimram, *Presenting a Category Modulo a Rewriting System*, RTA 2015, Varsovie.
- Generalization on 2-categories to come

