Presentations Modulo

Florence

Samuel

November 19, 2014

${\bf Contents}$

L	Localization and quotient of categories, category of fractions	2
	1.1 Localization	2
	1.2 Quotient	2
	1.3 Category of fractions	3
2	Remainings	4
	2.1 Definition of remainings	4
	2.2 2-category of remainings	4
	2.3 2-cells of remainings	7
3	Cancellativity of the equational morphisms	8
1	Category of normal forms	13
5	Embedding of $\mathcal C$ into its localization	14
3	Isomorphism between the quotient and the category of normal forms	14
7	Equivalence between the category of normal forms and the localization	17
3	Extending this to 2-categories	17

Introduction

- presentations of monoids = string rewriting systems
- we first investigate a small generalization to presentations of categories

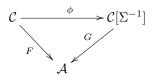
•

1 Localization and quotient of categories, category of fractions

1.1 Localization

Definition 1. Let \mathcal{C} be a category. Let Σ be a set of morphisms of \mathcal{C} .

A localization of \mathcal{C} by Σ is given by a category $\mathcal{C}[\Sigma^{-1}]$ and a functor $\phi: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ such that $\iota(\Sigma)$ is a subset of the isomorphisms of $\mathcal{C}[\Sigma^{-1}]$ and such that for any category \mathcal{A} and any functor $F: \mathcal{C} \to \mathcal{A}$ such that $F(\Sigma)$ is a subset of the isomorphisms of \mathcal{A} , there exists a unique functor $G: \mathcal{C}[\Sigma^{-1}] \to \mathcal{A}$ such that the following diagram commute:



Lemma 2. Let \mathcal{C} be a category. Let Σ be a set of morphisms of \mathcal{C} . Let W be the closure of Σ by composition.

Any localization of \mathcal{C} by Σ is a localization of \mathcal{C} by W. Conversely, any localization of \mathcal{C} by W is a localization of \mathcal{C} by Σ .

Explicit description It is possible to give an explicit description of the localization of a category \mathcal{C} . Let us call \mathcal{G} its underlying graph. The set of vertices of \mathcal{G} is the set of objects of \mathcal{C} and the set of edges of \mathcal{G} is the set of morphisms of \mathcal{C} . We denote by W the closure by composition of Σ . Let us now call \mathcal{G}' the graph obtained from \mathcal{G} by adding some edges to it: for any $w \in W$, we add \overline{w} to the edges of \mathcal{G} . Let \equiv be the smallest relation of equivalence on the morphisms of the category $(\mathcal{G}')^*$ such that:

$$\begin{array}{rcl} w \circ \overline{w} & \equiv & id \\ \overline{w} \circ w & \equiv & id \\ g \circ f & \equiv & g \star f \end{array}$$

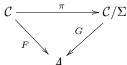
where w is any element of W, \circ is the composition in the category $(\mathcal{G}')^*$ and \star is the composition in \mathcal{C} . The localization of \mathcal{C} by Σ is the category $(\mathcal{G}')^*/\equiv$

1.2 Quotient

Definition 3. Let \mathcal{C} be a category. Let Σ be a set of morphisms of \mathcal{C} .

A quotient of \mathcal{C} by Σ is given by a category \mathcal{C}/Σ and a functor $\pi: \mathcal{C} \to \mathcal{C}/\Sigma$ such that $\pi(\Sigma)$ is a subset of the identites of \mathcal{C}/Σ and such that for any category

 $\mathcal A$ and any functor $F:\mathcal C\to\mathcal A$ such that $F(\Sigma)$ is a subset of the identities of $\mathcal A$, there exists a unique functor $G:\mathcal C/\Sigma\to\mathcal A$ such that the following diagram commute:



Explicit description reference: manu, categories of components and loop-free categories

Given \mathcal{C} a category and Σ a set of morphisms of \mathcal{C} , we define the two equivalence relations \sim_0 over the set of objects of \mathcal{C} and \sim_1 over the set of non-empty \sim_0 -composable sequences of \mathcal{C} as the smaller equivalence relations satisfying the following conditions:

- 1. for any $w: x \to y \in \Sigma$, $x \sim_0 y$ and $w \sim_1 id_x \sim_1 id_y$
- 2. if $x \sim_0 y$, then $(id_x) \sim_1 (id_y)$.
- 3. if $(\delta_n, ..., \delta_0) \sim_1 (\gamma_p, ..., \gamma_0)$, then the sources of δ_0 and γ_0 are \sim_0 -equivalent, and the targets of δ_n and γ_p are \sim_0 -equivalent.
- 4. if the source of γ is the target of δ (ie $\gamma \circ \delta$ is defined), then $(\gamma, \delta) \sim_1 (\gamma \circ \delta)$.
- 5. if $(\delta_n,...,\delta_0) \sim_1 (\delta'_{n'},...,\delta'_0)$, $(\gamma_p,...,\gamma_0) \sim_1 (\gamma'_{p'},...,\gamma'_0)$ and the target of δ_n and the source of γ_0 are \sim_0 -equivalent, then

$$(\gamma_p,...,\gamma_0,\delta_n,...,\delta_0) \sim_1 (\gamma'_{p'},...,\gamma'_0,\delta'_{n'},...,\delta'_0)$$

the quotient of \mathcal{C} by Σ is defined as the category whose objects are the \sim_0 -classes of equivalence and whose morphisms are the \sim_1 -classes of equivalence of non-empty \sim_0 -composable sequences of \mathcal{C} .

1.3 Category of fractions

reference: Borceux

Definition 4. Given a category \mathcal{C} and a set Σ of morphisms of \mathcal{C} , we say that Σ^* admits a left calculus of fractions when the following conditions hold:

- for $f:A\to B$ in $\mathcal C$ and $s:A\to C$ in Σ^* there exist $g:C\to D$ in $\mathcal C$ and $t:B\to D$ in Σ^* such that $t\circ f=g\circ s$,
- for $s:A\to B$ in Σ^* and $f,g:B\to C$ in $\mathcal C$ such that $f\circ s=g\circ s$, there exist $t:C\to D$ such that $t\circ f=t\circ g$.

Definition 5. Given a category \mathcal{C} and a set Σ of morphisms of \mathcal{C} such that Σ^* admits a left-calculus of fractions in \mathcal{C} , we define the category of fraction as the category \mathcal{D} such that

- ullet the objects of ${\mathcal D}$ are the objects of ${\mathcal C}$
- a morphism $A \to B$ in \mathcal{D} is an equivalence class of triples (f, I, s) where :

- I is an object of C,
- $-f:A\to I$ is a morphism in \mathcal{C} ,
- $-s: B \to I$ is a morphism in Σ^* and
- the triples (f, I, s) and (g, J, t) are equivalent if there exist two morphisms x, y in \mathcal{C} such that $x \circ s = y \circ t$ is in Σ^* and such that $x \circ f = y \circ g$
- the composition of the equivalence classes of $(f, I, s) : A \to B$ and $(g, J, t) : B \to C$ in \mathcal{D} is the class of equivalence of $(h \circ f, K, v \circ t) : A \to C$ where $v : J \to K$ is in Σ^* , $h : I \to K$ is in \mathcal{C} and $h \circ s = v \circ g$.

Theorem 6. Given a category \mathcal{C} and a set Σ of morphisms of \mathcal{C} such that Σ^* admits a left-calculus of fractions in \mathcal{C} , then the category of fractions is a localization of the category \mathcal{C} by the set of morphisms Σ .

Notations From now on, we call \mathcal{C} a category presented by a 2-polygraph $(\Sigma_0, \Sigma_1, \Sigma_2)$ and Σ a subset of Σ_1 .

2 Remainings

2.1 Definition of remainings

Hypothesis 7. For any x and y in Σ_1 having same domain, there exists at most one 2-cell $x... \Rightarrow y...$ or $y... \Rightarrow x...$ in Σ_2 .

Hypothesis 8. For any x in Σ and any y in Σ_1 having same domain and such that $x \neq y$, there exists a unique x' in Σ^* , a unique y' in Σ_1^* and a unique 2-cell in Σ_2 between xy' and yx'.

Definition 9. For any x in Σ and any y in Σ_1 having same domain and such that $x \neq y$, there exists a unique x' in Σ^* , a unique y' in Σ_1^* and a unique 2-cell in Σ_2 between xy' and yx'. We call x' (resp y') the remaining of x (resp y) after y (resp x) and it is denoted by x/y (resp y/x).

2.2 2-category of remainings

Definition 10. The 2-category of remainings \mathcal{D} is the 2-category generated by the 2-polygraph $(\Sigma_0, \Sigma_1 \uplus \overline{\Sigma}, D_2)$ where

$$\overline{\Sigma} = \{\overline{f}: y \to x \mid f: x \to y \in \Sigma\}$$

and where

$$D_2 = \{ \overline{x}y \Rightarrow (y/x) \overline{(x/y)} \mid x \neq y, x \in \Sigma, y \in \Sigma_1 \} \uplus \{ \overline{x}x \Rightarrow id \mid x \in \Sigma \}$$

Definition 11. We define the preorder $<_1$ on the 1-cells of \mathcal{D} as the smallest preorder such that :

$$\overline{x}x >_1$$
 id when $x \in \Sigma$
 $\overline{x}y >_1$ $(y/x)\overline{(x/y)}$ when $x \neq y, x \in \Sigma, y \in \Sigma_1$
 $uv_1w >_1$ uv_2w whenever $v_1 >_1 v_2$

Hypothesis 12. The preorder $<_1$ has no infinite decreasing sequence.

It means in particular that the rewriting system on the 1-cells of \mathcal{D} and which rewriting rules are given by D_2 is convergent.

Lemma 13. For any 1-cell f of the 2-category of remainings \mathcal{D} , there exists unique g in Σ_1^* , h in $\overline{\Sigma}^*$ and A in D_2^* such that $A: f \Rightarrow g\overline{h}$.

Proof. This is done by well-founded induction on the 1-cells of \mathcal{D} . Any 1-cell f is of the form

$$f = \overline{a_{1,k_1}}...\overline{a_{1,1}}f_{1,1}...f_{1,j_1}\overline{a_{2,k_2}}...\overline{a_{2,1}}f_{2,1}...f_{2,j_2}...f_{n,1}...f_{n,j_n}$$

faire schéma

There are two cases to consider.

If there does not exist j such that f contains $\overline{a_{j,1}}f_{j,1}$, then it means that f is already in the expected form.

If there exists j such that f contains $\overline{a_{j,1}}f_{j,1}$, then by hypothesis, $\overline{a_{j,1}}f_{j,1}$ rewrites in $(f_{j,1}/a_{j,1})\overline{(a_{j,1}/f_{j,1})}$. Moreover, by definition:

$$\overline{a_{j,1}}f_{j,1} >_1 (f_{j,1}/a_{j,1})\overline{(a_{j,1}/f_{j,1})}$$

which means that f is strictly greater then the term obtained by rewriting $\overline{a_{j,1}}f_{j,1}$.

The uniqueness of $g\overline{h}$ comes from the confluence of the rewriting system on the 1-cells of \mathcal{D} and which rewriting rules are given by D_2 .

uniqueness of A: take minimal 1-cell f such that there are 2 possible As. only up to exchange law.

Lemma 14. For any f in Σ_1^* and γ in Σ^* , there exist unique f/γ in Σ_1^* , a unique γ/f in Σ^* and a 2-cell $f(\gamma/f) \Rightarrow \gamma(f/\gamma)$ in $(\Sigma_2 \uplus \overline{\Sigma_2})^*$.

Proof. By the previous lemma, we get unique g in Σ_1^* , h in $\overline{\Sigma}^*$ and A in D_2^* such that $A: f \Rightarrow g\overline{h}$. Besides, by contruction, we get that $h = \gamma/f$ and $g = f/\underline{\gamma}$.

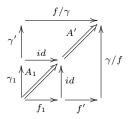
Let us construct from A a 2-cell \hat{A} : $f.(\gamma/f) \Rightarrow \gamma.(f/\gamma)$ in $(\Sigma_2 \uplus \overline{\Sigma_2})^*$ by induction on the size of A (number of generating 2-cells). We may write $\gamma = \gamma' \circ \gamma_1$ where γ_1 is in Σ and $f = f' \circ f_1$ where f_1 is in Σ_1 . There are two different cases to consider.

rajouter les identités dans le lemme précédent

First, if $f_1 = \gamma_1$, then by construction of A,

$$A = (\overline{\gamma'}A_1f')A'$$

where $A_1 : \overline{f'}f' \Rightarrow id :$

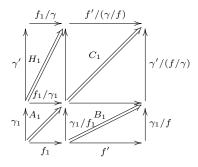


Assuming $\widehat{A'}$ is constructed, we may set

$$\hat{A} = f_1 \widehat{A'}$$
.

Second, if $f_1 \neq \gamma_1$, then

$$A = \left(\overline{\gamma'} A_1 f'\right) \left(H_1 \overline{(\gamma_1/f_1)} f'\right) \left(\overline{\gamma'} (f_1/\gamma_1) B_1\right) \left((f_1/\gamma) C_1 \overline{(\gamma_1/f)}\right)$$



If there is a 2-cell $\gamma_1.(f_1/\gamma_1) \Rightarrow f_1.(\gamma_1/f_1)$ in Σ_2 , we set $\widehat{A_1}$ to be this 2-cell. Otherwise, there is a 2-cell $f_1.(\gamma_1/f_1) \Rightarrow \gamma_1.(f_1/\gamma_1)$ in Σ_2 and we set $\widehat{A_1}$ to be the reverse 2-cell. Assuming $\widehat{H_1}$, $\widehat{B_1}$ and $\widehat{C_1}$ are constructed, we set :

$$\widehat{A} = (\gamma_1 \widehat{H}_1(f'/(\gamma/f)))(\widehat{A}_1 \widehat{C}_1)(f_1 \widehat{B}_1(\gamma'/(f/\gamma)))$$

Lemma 15. We have extended the definition of remainings to morphisms (and not only generating morphisms). It verifies the following equations. Let u be a morphism in Σ^* .

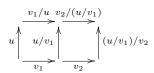
$$id/u = id$$

$$u/id = u.$$

If either v_1 and v_2 are in Σ^* and u is in Σ_1^* , or v_1 and v_2 are in Σ_1^* and u is in Σ^* , then we may define:

$$(v_1.v_2)/u = (v_1/u).(v_2/(u/v_1))$$

 $u/(v_1.v_2) = (u/v_1)/v_2$



Proof. We have to check that $(u_1.u_2)/(v_1.v_2)$ gives us the same result. By using the second expression, we get:

$$(u_1.u_2)/(v_1.v_2) = ((u_1.u_2)/v_1)/v_2$$

$$= [(u_1/v_1).(u_2/(v_1/u_1))]/v_2$$

$$= [(u_1/v_1)/v_2].([u_2/(v_1/u_1)]/[v_2/(u_1/v_1)])$$

By using the first expression, we get:

$$\begin{array}{lcl} (u_1.u_2)/(v_1.v_2) & = & [u_1/(v_1.v_2)].(u_2/[(v_1.v_2)/u_1]) \\ & = & [(u_1/v_1)/v_2].(u_2/[(v_1.v_2)/u_1]) \\ & = & [(u_1/v_1)/v_2].(u_2/([v_1/u_1].[v_2/(u_1/v_1)])) \\ & = & [(u_1/v_1)/v_2].([u_2/(v_1/u_1)]/[v_2/(u_1/v_1)]) \end{array}$$

We also have to check that by writing a morphism in two different ways, we still get the same result.

$$u/(v_1.(v_2.v_3)) = (u/v_1)/(v_2.v_3)$$

$$= ((u/v_1)/v_2)/v_3$$

$$= (u/(v_1.v_2))/v_3$$

$$= u/((v_1.v_2).v_3)$$

$$\begin{aligned} (v_1.(v_2.v_3))/u &= (v_1/u).((v_2.v_3)/(u/v_1)) \\ &= (v_1/u).(v_2/(u/v_1)).(v_3/((u/v_1)/v_2)) \\ &= ((v_1.v_2)/u).(v_3/((u/v_1)/v_2)) \\ &= ((v_1.v_2)/u).(v_3/(u/(v_1.v_2))) \\ &= ((v_1.v_2).v_3)/u \end{aligned}$$

attention, dépend de existence des résidus!

2.3 2-cells of remainings

Here we consider the 2-category \mathcal{C}' generated by the 2-polygraph $(\Sigma_0, \Sigma_1', \Sigma_2')$ where :

$$\Sigma_1' = \{ f^H : x \to y \mid f : x \to y \in \Sigma_1 \} \cup \{ f^V : x \to y \mid f : x \to y \in \Sigma \}$$

and

$$\begin{array}{lll} \Sigma_{2}^{H} & = & \{A_{1}^{H}:f^{H}\rightarrow g^{H},\\ & & A_{2}^{H}:g^{H}\rightarrow f^{H}\mid A:f\rightarrow g\in\Sigma_{2}\}\\ \\ \Sigma_{2}^{V} & = & \{A(f,g)^{V}:f^{V}(g/f)^{H}\rightarrow g^{H}(f/g)^{V},\\ & & A(g,f)^{V}:g^{V}(f/g)^{H}\rightarrow f^{H}(g/f)^{V}\mid f,g\in\Sigma_{1},A:f(g/f)\rightarrow g(f/g)\in\Sigma_{2}\}\\ \\ \Sigma_{2}' & = & \Sigma_{2}^{H}\cup\Sigma_{2}^{V} \end{array}$$

Given f and g in Σ_1^* , we will denote by $A(f,g)^V$ and $A(g,f)^V$ the corresponding 2-cells between the residuals.

Hypothesis 16. We assume that for any 2-cell $A^H: f^H \to g^H$ in Σ_2^H and any h in Σ_1 such that the residuals between h and f and between h and g exist, then h/f = h/g and there exist a 2-cell $B^H: (f/h)^H \to (g/h)^H$ in $(\Sigma_2^H)^*$.

We define the rewriting system \mathcal{S}' on the 2-cells of \mathcal{C}' : for any 2-cell A^H : $f^H \to g^H$ in Σ_2^H and any h in Σ_1 such that the residuals between h and f and between h and g exist,

$$A(h, f)^{V}.(A^{H}.(h/f)) \to (h.B^{H}).A(h, g)^{V}$$

Lemma 17.

Here we consider the 2-category presented by

3 Cancellativity of the equational morphisms

Lemma 18. If $u \sim u'$ and if v is in W, then

$$v/u = v/u' \tag{1}$$

$$u/v \sim u'/v$$
 (2)

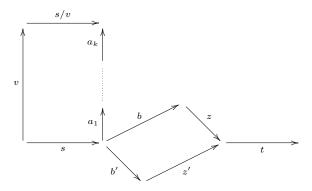
Proof. This is done by induction on the length of the rewriting steps between u and u'.

We have to study the case where u = s.w.t and u' = s.w'.t where (w, w') is in R. By hypothesis, v/s is in W. Let us check that

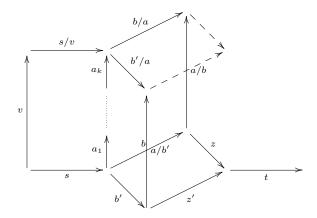
$$w/(v/s) \sim w'/(v/s)$$
 and $(v/s)/w = (v/s)/w'$.

The word v/s writes a_1, \ldots, a_k where all a_i are in Σ .

Assume that neither w nor w' are identities. This means in particular that w = b.z and w' = b'.z' with b and b' in X, z = b'/b and z' = b/b' Pourquoi bordel?.

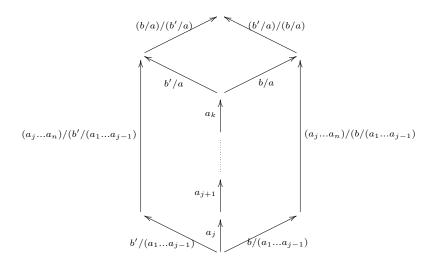


By hypothesis, $a = a_1...a_k$ is in Σ , so we are able to consider its remainings with b and b':

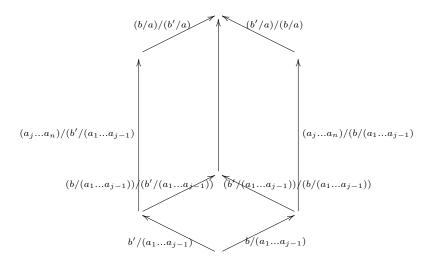


Where the dashed arrows represent (b'/a)/(b/a) and (b/a)/(b'/a).

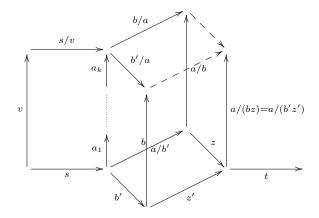
By induction on j from k down to 1, we are able to close the following diagram



into



In particular, we get:



This allows to conclude this proof.

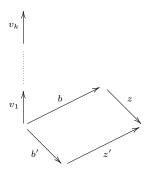
Lemma 19. If $u \sim u'$ and if u and u' are in W, then

$$v/u = v/u'$$

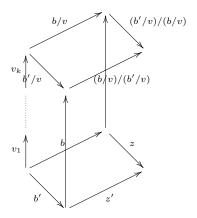
Proof. This is proven by induction on the length of the path of 2-cells between u and u'. By hypothesis, there exist $u_1, ..., u_k$ in W such that $u_1 = u, u_k = u'$ and such that the length of the path between u_i and u_{i-1} is one.

We are then down to considering the following case, where (bz, b'z') is a

relation in R with bz and b'z' in W.



This means in particular that we are able to construct the remainings between b and $v = v_1...v_k$ and between b' and v. Besides, both b/v and b'/v are in W which means that we are able to consider their remainings. This gives us the following diagram



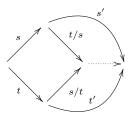
Similarly to previous lemma, we are able to **ce serait probablement une** bonne idée de le faire quand meme, quitte à recopier et adapter un pouième fill this diagram using the cube property.

Lemma 20. The category \mathcal{C} admits pushouts between equational morphisms.

Proof. Let us consider two morsphisms s and t of W. By hypothesis, there exist remainings between them, which gives :

Let us now verify that the remainings satisfy the universal property of

pushouts. Let us consider the following case:



There are two possible dotted arrows: (ss')/(s.(t/s)) and (tt')/(t.(s/t)). Indeed,

$$(s.(t/s))/(ss')$$
 = $(t/s)/s'$
 = $t/(ss')$
 = $t/(tt')$ 1 du premier lemme préparatoire
 = 1

Similarly (t.(s/t))/(tt') = 1.

Let us now prove that these two arrows are the same in the presented category, which means that

$$(ss')/(s.(t/s)) \sim (tt')/(t.(s/t)).$$

$$(ss')/(s.(t/s)) = (ss')/(t.(s/t))$$
 2e lemme préparatoire
$$\sim (tt')/(t.(s/t))$$

Let us assume that there is another possible h. et là, on fait quoi?

faire attention que dans C, les morphismes équationnels sont en fait dans Σ^*/Σ_2

Lemma 21. Whenever

$$f \circ s = g \circ s$$

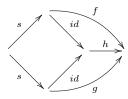
for f and g two morphisms of $\mathcal C$ and s a morphism in W, then

$$f = q$$

Proof. Let us assume that

$$f \circ s = g \circ s$$

for f and g two morphisms of \mathcal{C} and s a morphism in W. As there are pushouts between morphisms of W, we get that there exists a unique h in \mathcal{C} such that



In particular, we get that f = g = h in C

Lemma 22. The category $\mathcal C$ admits pushouts between equational morphisms and other morphisms.

Proof. Let us consider an equational morphism f and a morphism g having same domain. By a previous lemma, we may consider their remainings. Let us now check that this is indeed a pushout. Let f' and g' be two morphisms such that in C,

$$f' \circ f = g' \circ g$$
.

The remaining f/g is equational, which means that we may consider its remainings with g':

$$(f/g)/g' = f/(gg') = f/(ff') = id$$

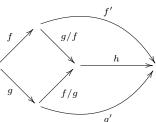
here we assume $u \sim v$ and f eq than $f/u \sim f/v$ Let us denote k = g'/(f/g). Which means that $g' = k \circ (f/g)$. Let us prove that $f' = k \circ (g/f)$.

$$ff' = gg'$$

$$= g.(f/g).k$$

$$= f.(g/f).k$$

And by cancellativity of the equational morphisms we get the expected result. Now, let us assume that there exist a morphism h making the following diagrams commute:



As f/g is an equational morphism, we get directly from (f/g).h = f' = (f/g).k that h = k.

Definition 23. The local property of the cylinder is satisfied if for any two 1-cells f and g in Σ_1 with a 2-cell $u_1 \Rightarrow u_2$ or $u_2 \Rightarrow u_1$ in Σ_2 , for any 1-cell h in Σ (having the same domain), it is possible to take their remainings and moreover

$$h/f = h/g$$

and there is a 2-cell $f/h \Rightarrow g/h$ in $(\Sigma_2 \uplus \overline{\Sigma_2})^*$.

4 Category of normal forms

Let us consider the rewriting system on the objects of \mathcal{C} , namely Σ_0 , and which relations are the arrows of Σ . We ask that this rewriting system is convergent (terminating and locally confluent). This means in particular that every object x of \mathcal{C} admits a unique normal form with respect to Σ denoted \hat{x} .

Definition 24. We define the category of normal forms, denoted \mathcal{C}_{Σ} as the full subcategory of \mathcal{C} whose objects are the normal forms of the rewriting system (Σ_0, Σ) .

Lemma 25. The inclusion functor $\iota: \mathcal{C}_{\Sigma} \to \mathcal{C}$ is full and faithful.

Proof. The objects of \mathcal{C}_{Σ} are objects of \mathcal{C} . Let x and y be two objects of \mathcal{C}_{Σ} . As \mathcal{C}_{Σ} is a full subcategory of \mathcal{C} ,

$$Hom_{\mathcal{C}_{\Sigma}}(x,y) = Hom_{\mathcal{C}}(x,y) = Hom_{\mathcal{C}}(\iota x, \iota y)$$

This proves that the functor ι is full and faithful.

The functor ι does not define an equivalence of category as the morphisms in Σ are not isomorphisms in C.

5 Embedding of \mathcal{C} into its localization

Lemma 26. Let \mathcal{C} be a category and let W be a set of morphisms of \mathcal{C} . Consider the corresponding category of fractions $\phi: \mathcal{C} \to \mathcal{C}[W^{-1}]$.

If W admits a left calculus of fractions and all the morphisms of W are monomorphisms, then ϕ is faithful.

Proof. Let f and g be two morphisms of C such that $\phi f = \phi g$. Let us show that f = g.

Given the explicit description of the category of fractions of prop 5.2.4 of Borceux, we know that ϕf is the equivalence class of (f, id). As $\phi f = \phi g$, there exist h_1 and h_2 such that $h_1 \circ f = h_2 \circ g$ and $h_1 \circ id = h_2 \circ id \in W$:

We get that $h_1 = h_2 = h \in W$, and thus $h \circ f = h \circ g$. Besides, all the morphisms of W are monomorphisms, which means that f = g.

appliquer à notre cas

6 Isomorphism between the quotient and the category of normal forms

Lemma 27. The category of normal forms \mathcal{C}_{Σ} is a quotient of the category \mathcal{C} by Σ .

Proof. First let us define the functor π between \mathcal{C} and \mathcal{C}_{Σ} :

$$\begin{array}{cccc} \pi: \mathcal{C} & \to & \mathcal{C}_{\Sigma} \\ & x & \mapsto & \hat{x} \\ (f: x \to y) & \mapsto & (\hat{f}: \hat{x} \to \hat{y}) \end{array}$$

14

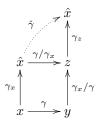
where \hat{f} is defined (using the lemma on the remainings of non-generating morphisms) as :

$$\hat{x} \xrightarrow{\hat{f}} \vec{y} = \hat{z} \\
\uparrow \gamma z / f \\
\downarrow \gamma z / f \\$$

where $\gamma_x: x \to \hat{x}$ and $\gamma_z: z \to \hat{z}$ are in Σ^* .

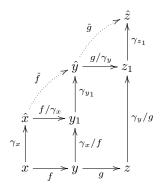
By cancellativity of the morphisms in Σ^* , we get that \hat{f} is defined independently of the choice of morphisms γ_x and γ_z .

Let us check that $\hat{\gamma} = id$ for γ in Σ^* . By convergence of the rewriting system (Σ_0, Σ) , $\hat{x} = \hat{y} = \hat{z}$, which means that



As \hat{x} is in normal form, there is no non-identity morphism in Σ^* which domain is \hat{x} . This means in particular that $\gamma/\gamma_x=id$, $z=\hat{x}$ and $\gamma_z=id$. This implies that $\hat{\gamma}=id$.

Let us check that $\widehat{g \circ f} = \widehat{g} \circ \widehat{f}$.



where $\gamma_y = \gamma_{y_1} \circ (\gamma_x/f)$. Moreover, the down-right rectangle is

$$\begin{array}{c} \hat{y} \xrightarrow{g/[(\gamma_x/f).\gamma_{y_1}]} z_1 \\ \uparrow^{\gamma_{y_1}} & \xrightarrow{g/(\gamma_x/f)} z_1 \\ y_1 \xrightarrow{g/(\gamma_x/f)} z_2 \\ \uparrow^{\gamma_x/f} & & \uparrow^{(\gamma_x/f)/g = \gamma_x/(g \circ f)} \\ y \xrightarrow{g} z \end{array}$$

Which gives us that $\widehat{g \circ f} = \hat{g} \circ \hat{f}$ as

$$(g \circ f)/\gamma_x = (g/(\gamma_x/f)) \circ (f/\gamma_x)$$

We have

$$\pi \circ \iota = id.$$

Let us now consider a functor $F: \mathcal{C} \to \mathcal{A}$ such that $F(\Sigma)$ is a subset of the identities of \mathcal{A} . Let us define $G = F\iota$. Let us check that $F = G\pi$. Let x be an object of \mathcal{C} and let $\gamma: x \to \hat{x}$ a morphism of \mathcal{C} in Σ^* . We get that

$$Fx = F\gamma x = F\hat{x}$$

as $F(\Sigma)$ is a subset of the identities of A. Moreover,

$$(G \circ \pi)x = G\hat{x} = (F\iota)\hat{x} = F\hat{x}.$$

This proves the expected equality on the objects of C.

Let us now consider a morphism $f: x \to y$ in \mathcal{C} . In \mathcal{C} , we have the following commutating diagram:

with γ_x and γ_y two morphisms in Σ^* . By functoriality of F, we get the following commutating diagram in \mathcal{A} :

$$\begin{array}{c|c} F\hat{x} \xrightarrow{F\hat{f}} F\hat{y} \\ F\gamma_x & & \uparrow \\ Fx \xrightarrow{Ff} Fy \end{array}$$

where $F\gamma_x = id$ and $F\gamma_y = id$, which means that

$$Ff = F\hat{f}$$

Besides in C, $\iota \pi f = \hat{f}$, which gives

$$F\hat{f} = F\iota\pi f = G\pi f.$$

This proves the expected equality on the morphisms of C.

There remains to show that G is the unique functor that allows to check the universal property of the quotient. Let us assume that both G_1 and G_2 satisfy the universal property. This means that $G_1\pi = F = G_2\pi$. Using $\pi \iota = id$, we get:

$$G_1 = F\iota = G_2$$

which proves uniqueness of G.

Corollary 28. The categories \mathcal{C}_{Σ} and \mathcal{C}/Σ are isomorphic.

7 Equivalence between the category of normal forms and the localization

Lemma 29. The categories \mathcal{C}_N and $\mathcal{C}[\Sigma^{-1}]$ are equivalent.

Definition 30. Given two categories \mathcal{C} and \mathcal{D} and a functor $S: \mathcal{C} \to \mathcal{D}$, the functor S defines an equivalence of category if the following conditions are satisfied:

- 1. for any object d of \mathcal{D} , there exists an object c of \mathcal{C} such that d and Sc are isomorphic,
- 2. the functor S is both full and faithful, namely, for any two objects c_1 and c_2 of C, the map $Hom_{C}(c_1, c_2) \to Hom_{D}(Fc_1, Fc_2)$ induced by S is bijective.

Proof. There is an inclusion functor $\iota : \mathcal{C}_{\Sigma} \to \mathcal{C}$ and there is also a localization functor $\phi : \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$.

They allow us to define the functor $S: \mathcal{C}_{\Sigma} \to \mathcal{C}[\Sigma^{-1}]$ as the composition

$$\mathcal{C}_{\Sigma} \xrightarrow{\iota} \mathcal{C} \xrightarrow{\phi} \mathcal{C}[\Sigma^{-1}]$$

We now aim at showing that this functor defines an equivalence of category. We have previously shown that the functor ϕ is faithful. The functor ι is also faithful. This means that the functor S is faithful.

Let us now prove that it is full, namely that the function

$$C_{\Sigma}(\hat{x}, \hat{y}) \to C[\Sigma^{-1}](\hat{x}, \hat{y})$$

induced by S is surjective. Let $f: \hat{x} \to \hat{y}$ be a morphism in $\mathcal{C}[\Sigma^{-1}]$. By a previous lemma, there exist g in Σ_1^* and h in Σ^* such that $f = g\overline{h}$ in $\mathcal{C}[\Sigma^{-1}]$. Besides, as \hat{y} is in normal form, h = id. This means that Sg = g and therefore S is full.

Any object y of $\mathcal{C}[\Sigma^{-1}]$ is also an object of \mathcal{C} and $\phi y = y$. We may consider its normal form \hat{y} which is an object of \mathcal{C}_N . By definition, there is a morphisms $h: y \to \hat{y}$ in Σ^* . The morphism ϕh is an isomorphism in $\mathcal{C}[\Sigma^{-1}]$ which means that the objects y and $S\hat{y}$ are isomorphic.

8 Extending this to 2-categories